972 resultados para cancer metabolism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamine is an essential nutrient for cancer cell proliferation, especially in the context of citric acid cycle anaplerosis. In this manuscript we present results that collectively demonstrate that, of the three major mammalian glutaminases identified to date, the lesser studied splice variant of the gene gls, known as Glutaminase C (GAC), is important for tumor metabolism. We show that, although levels of both the kidney-type isoforms are elevated in tumor vs. normal tissues, GAC is distinctly mitochondrial. GAC is also most responsive to the activator inorganic phosphate, the content of which is supposedly higher in mitochondria subject to hypoxia. Analysis of X-ray crystal structures of GAC in different bound states suggests a mechanism that introduces the tetramerization-induced lifting of a "gating loop" as essential for the phosphate-dependent activation process. Surprisingly, phosphate binds inside the catalytic pocket rather than at the oligomerization interface. Phosphate also mediates substrate entry by competing with glutamate. A greater tendency to oligomerize differentiates GAC from its alternatively spliced isoform and the cycling of phosphate in and out of the active site distinguishes it from the liver-type isozyme, which is known to be less dependent on this ion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metabolic reprogramming has been shown to be a major cancer hallmark providing tumor cells with significant advantages for survival, proliferation, growth, metastasis and resistance against anti-cancer therapies. Glycolysis, glutaminolysis and mitochondrial biogenesis are among the most essential cancer metabolic alterations because these pathways provide cancer cells with not only energy but also crucial metabolites to support large-scale biosynthesis, rapid proliferation and tumorigenesis. In this study, we find that 14-3-3σ suppresses all these three metabolic processes by promoting the degradation of their main driver, c-Myc. In fact, 14-3-3s significantly enhances c-Myc poly-ubiquitination and subsequent degradation, reduces c-Myc transcriptional activity, and down-regulates c-Myc-induced metabolic target genes expression. Therefore, 14-3-3σ remarkably blocks glycolysis, decreases glutaminolysis and diminishes mitochondrial mass of cancer cells both in vitro and in vivo, thereby severely suppressing cancer bioenergetics and metabolism. As a result, a high level of 14-3-3σ in tumors is strongly associated with increased breast cancer patients’ overall and metastasis-free survival as well as better clinical outcomes. Thus, this study reveals a new role for 14-3-3s as a significant regulator of cancer bioenergetics and a promising target for the development of anti-cancer metabolism therapies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

After briefly reviewing the nature of DNA methylation, its general role in cancer and the tools available to interrogate it, we consider the literature surrounding DNA methylation as relating to prostate cancer. Specific consideration is given to recurrent alterations. A list of frequently reported genes is synthesised from seventeen studies that have reported on methylation changes in malignant prostate tissue, and we chart the timing of those changes in the diseases history through amalgamation of several previously published data sets. We also review associations with genetic alterations and hormone signalling, before the practicalities of investigating prostate cancer methylation using cell lines are assessed. We conclude by outlining the interplay between DNA methylation and prostate cancer metabolism and their regulation by Androgen Receptor, with a specific discussion of the mitochondria and their associations with DNA methylation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis reports the application of metabolomics to human tissues and biofluids (blood plasma and urine) to unveil the metabolic signature of primary lung cancer. In Chapter 1, a brief introduction on lung cancer epidemiology and pathogenesis, together with a review of the main metabolic dysregulations known to be associated with cancer, is presented. The metabolomics approach is also described, addressing the analytical and statistical methods employed, as well as the current state of the art on its application to clinical lung cancer studies. Chapter 2 provides the experimental details of this work, in regard to the subjects enrolled, sample collection and analysis, and data processing. In Chapter 3, the metabolic characterization of intact lung tissues (from 56 patients) by proton High Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) spectroscopy is described. After careful assessment of acquisition conditions and thorough spectral assignment (over 50 metabolites identified), the metabolic profiles of tumour and adjacent control tissues were compared through multivariate analysis. The two tissue classes could be discriminated with 97% accuracy, with 13 metabolites significantly accounting for this discrimination: glucose and acetate (depleted in tumours), together with lactate, alanine, glutamate, GSH, taurine, creatine, phosphocholine, glycerophosphocholine, phosphoethanolamine, uracil nucleotides and peptides (increased in tumours). Some of these variations corroborated typical features of cancer metabolism (e.g., upregulated glycolysis and glutaminolysis), while others suggested less known pathways (e.g., antioxidant protection, protein degradation) to play important roles. Another major and novel finding described in this chapter was the dependence of this metabolic signature on tumour histological subtype. While main alterations in adenocarcinomas (AdC) related to phospholipid and protein metabolisms, squamous cell carcinomas (SqCC) were found to have stronger glycolytic and glutaminolytic profiles, making it possible to build a valid classification model to discriminate these two subtypes. Chapter 4 reports the NMR metabolomic study of blood plasma from over 100 patients and near 100 healthy controls, the multivariate model built having afforded a classification rate of 87%. The two groups were found to differ significantly in the levels of lactate, pyruvate, acetoacetate, LDL+VLDL lipoproteins and glycoproteins (increased in patients), together with glutamine, histidine, valine, methanol, HDL lipoproteins and two unassigned compounds (decreased in patients). Interestingly, these variations were detected from initial disease stages and the magnitude of some of them depended on the histological type, although not allowing AdC vs. SqCC discrimination. Moreover, it is shown in this chapter that age mismatch between control and cancer groups could not be ruled out as a possible confounding factor, and exploratory external validation afforded a classification rate of 85%. The NMR profiling of urine from lung cancer patients and healthy controls is presented in Chapter 5. Compared to plasma, the classification model built with urinary profiles resulted in a superior classification rate (97%). After careful assessment of possible bias from gender, age and smoking habits, a set of 19 metabolites was proposed to be cancer-related (out of which 3 were unknowns and 6 were partially identified as N-acetylated metabolites). As for plasma, these variations were detected regardless of disease stage and showed some dependency on histological subtype, the AdC vs. SqCC model built showing modest predictive power. In addition, preliminary external validation of the urine-based classification model afforded 100% sensitivity and 90% specificity, which are exciting results in terms of potential for future clinical application. Chapter 6 describes the analysis of urine from a subset of patients by a different profiling technique, namely, Ultra-Performance Liquid Chromatography coupled to Mass Spectrometry (UPLC-MS). Although the identification of discriminant metabolites was very limited, multivariate models showed high classification rate and predictive power, thus reinforcing the value of urine in the context of lung cancer diagnosis. Finally, the main conclusions of this thesis are presented in Chapter 7, highlighting the potential of integrated metabolomics of tissues and biofluids to improve current understanding of lung cancer altered metabolism and to reveal new marker profiles with diagnostic value.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cancer cells are known to display increased glucose uptake and consumption. The glucose transporter (GLUT) proteins facilitate glucose uptake, however, their exact role in cancer metabolism remains unclear. The present study examined mRNA and protein expression of GLUT1, GLUT3, GLUT4 and GLUT12 in lung, breast and prostate cancer cells and corresponding noncancerous cells. Additionally, GLUT expression was determined in tumours from mice xenografted with human cancer cells. Differences in the mRNA and protein expression of GLUTs were found between cancerous and corresponding noncancerous cells. These findings demonstrate abundant expression of GLUT1 in cancer and highlight the importance of GLUT3 as it was expressed in several cancer cells and tumours. GLUT expression patterns in vitro were supported by the in vivo findings. The study of GLUT protein expression in cancer is important for understanding cancer metabolism and may lead to identification of biomarkers of cancer progression and development of target therapies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Prostate cancer (CaP) is the most commonly diagnosed malignancy in males in the Western world with one in six males diagnosed in their lifetime. Current clinical prognostication groupings use pathologic Gleason score, pre-treatment prostatic-specific antigen and Union for International Cancer Control-TNM staging to place patients with localized CaP into low-, intermediate- and high-risk categories. These categories represent an increasing risk of biochemical failure and CaP-specific mortality rates, they also reflect the need for increasing treatment intensity and justification for increased side effects. In this article, we point out that 30-50% of patients will still fail image-guided radiotherapy or surgery despite the judicious use of clinical risk categories owing to interpatient heterogeneity in treatment response. To improve treatment individualization, better predictors of prognosis and radiotherapy treatment response are needed to triage patients to bespoke and intensified CaP treatment protocols. These should include the use of pre-treatment genomic tests based on DNA or RNA indices and/or assays that reflect cancer metabolism, such as hypoxia assays, to define patient-specific CaP progression and aggression. More importantly, it is argued that these novel prognostic assays could be even more useful if combined together to drive forward precision cancer medicine for localized CaP.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of cancer cachexia on protein metabolism has been studied in mice transplanted with the MAC16 adenocarcinoma. The progressive cachexia induced by the MAC16 tumour was characterised by a reduction in carcass nitrogen between 16-30% weight loss and a reciprocal increase in tumour nitrogen content. Carcass nitrogen loss was accompanied by a concomitant decrease in gastrocnemius muscle weight and nitrogen content and also by a decrease in liver nitrogen content. The loss of gastrocnemius muscle throughout the progression of cachexia was attributable to a 60% decrease in the rate of protein synthesis and a 240% increase in the rate of protein degradation. The loss of skeletal muscle protein that may be partially mediated by an increased rate of protein degradation has been correlated with a circulatory catabolic factor present only in cachectic tumour-bearing animals, that degrades host muscle in vitro. The proteolysis-inducing factor was found to be heat stable, not a serine protease and was inhibited by indomethacin and eicosapentaenoic acid (EPA) in a dose-related manner. The proteolytic factor induced prostaglandin E2 formation in the gastrocnemius muscle of non tumour-bearing animals and this effect was inhibited by indomethacin and EPA. In vivo studies show EPA (2.0g/kg-1 by gavage) to effectively reverse the decrease in body weight in animals bearing the MAC16 tumour with a concomitant reduction in tumour growth. Muscle from animals treated with EPA showed a decrease (60%) in protein degradation without an effect on protein synthesis. In vivo studies show branched chain amino acid treatment to be ineffective in moderating the cachectic effect of the MAC16 tumour. The action of the factor was largely mimicked by triarachidonin and trilinoleia. The increased serum levels of arachidonic acid in cachectic tumour-bearing animals may thus be responsible for increased protein degradation through prostanoid metabolism. The understanding of protein metabolism and catabolic factors in the cachectic animal may provide future avenues for the reversal of cachexia and the treatment of cancer.metabolism and catabolicmetabolism and cat

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Proper balancing of the activities of metabolic pathways to meet the challenge of providing necessary products for biosynthetic and energy demands of the cell is a key requirement for maintaining cell viability and allowing for cell proliferation. Cell metabolism has been found to play a crucial role in numerous cell settings, including in the cells of the immune system, where a successful immune response requires rapid proliferation and successful clearance of dangerous pathogens followed by resolution of the immune response. Additionally, it is now well known that cell metabolism is markedly altered from normal cells in the setting of cancer, where tumor cells rapidly and persistently proliferate. In both settings, alterations to the metabolic profile of the cells play important roles in promoting cell proliferation and survival.

It has long been known that many types of tumor cells and actively proliferating immune cells adopt a metabolic phenotype of aerobic glycolysis, whereby the cell, even under normoxic conditions, imports large amounts of glucose and fluxes it through the glycolytic pathway and produces lactate. However, the metabolic programs utilized by various immune cell subsets have only recently begun to be explored in detail, and the metabolic features and pathways influencing cell metabolism in tumor cells in vivo have not been studied in detail. The work presented here examines the role of metabolism in regulating the function of an important subset of the immune system, the regulatory T cell (Treg) and the role and regulation of metabolism in the context of malignant T cell acute lymphoblastic leukemia (T-ALL). We show that Treg cells, in order to properly function to suppress auto-inflammatory disease, adopt a metabolic program that is characterized by oxidative metabolism and active suppression of anabolic signaling and metabolic pathways. We found that the transcription factor FoxP3, which is highly expressed in Treg cells, drives this phenotype. Perturbing the metabolic phenotype of Treg cells by enforcing increased glycolysis or driving proliferation and anabolic signaling through inflammatory signaling pathways results in a reduction in suppressive function of Tregs.

In our studies focused on the metabolism of T-ALL, we observed that while T-ALL cells use and require aerobic glycolysis, the glycolytic metabolism of T-ALL is restrained compared to that of an antigen activated T cell. The metabolism of T-ALL is instead balanced, with mitochondrial metabolism also being increased. We observed that the pro-anabolic growth mTORC1 signaling pathway was limited in primary T-ALL cells as a result of AMPK pathway activity. AMPK pathway signaling was elevated as a result of oncogene induced metabolic stress. AMPK played a key role in the regulation of T-ALL cell metabolism, as genetic deletion of AMPK in an in vivo murine model of T-ALL resulted in increased glycolysis and anabolic metabolism, yet paradoxically increased cell death and increased mouse survival time. AMPK acts to promote mitochondrial oxidative metabolism in T-ALL through the regulation of Complex I activity, and loss of AMPK reduced mitochondrial oxidative metabolism and resulted in increased metabolic stress. Confirming a role for mitochondrial metabolism in T-ALL, we observed that the direct pharmacological inhibition of Complex I also resulted in a rapid loss of T-ALL cell viability in vitro and in vivo. Taken together, this work establishes an important role for AMPK to both balance the metabolic pathways utilized by T-ALL to allow for cell proliferation and to also promote tumor cell viability by controlling metabolic stress.

Overall, this work demonstrates the importance of the proper coupling of metabolic pathway activity with the function needs of particular types of immune cells. We show that Treg cells, which mainly act to keep immune responses well regulated, adopt a metabolic program where glycolytic metabolism is actively repressed, while oxidative metabolism is promoted. In the setting of malignant T-ALL cells, metabolic activity is surprisingly balanced, with both glycolysis and mitochondrial oxidative metabolism being utilized. In both cases, altering the metabolic balance towards glycolytic metabolism results in negative outcomes for the cell, with decreased Treg functionality and increased metabolic stress in T-ALL. In both cases, this work has generated a new understanding of how metabolism couples to immune cell function, and may allow for selective targeting of immune cell subsets by the specific targeting of metabolic pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le cancer du pancréas est l’un des plus chimiorésistants, avec un taux de survie sur 5 ans inférieur à 5%. La chimiorésistance pourrait être due à la présence de cellules initiatrices de tumeur (TICs), une petite sous-population des cellules tumorales possédant la capacité de régénérer une nouvelle tumeur. Il a été démontré que la metformine cible les TICs par un mécanisme non élucidé. Il est connu que la metformine affecte le métabolisme du carbone. Il a également été démontré que le métabolisme du carbone, plus précisément la glycine décarboxylase (GLDC), est à la fois nécessaire et suffisant à l’acquisition de propriétés d’initiation tumorale. Nous proposons que la metformine cible les cellules initiatrices de tumeur en affectant le métabolisme du carbone. Nous avons utilisé des lignées cellulaires dérivées d’un modèle murin de cancer du pancréas pour comparer l’expression génique de lésions bénignes versus malignes. Les cellules malignes surexpriment Gldc. La metformine diminue l’expression de Gldc, et la surexpression de Gldc diminue la sensibilité à la metformine dans un essai de sphères tumorales. La metformine induit une augmentation du ratio NADP+/NADPH, et la surexpression de Gldc empêche cette augmentation. Nous proposons que la metformine diminue l’expression de Gldc, ce qui cause une diminution du flux du métabolisme du carbone, et donc une diminution de la production de NADPH par ce dernier. L’augmentation du ratio NADP+/NADPH inhibe la synthèse des acides gras et la régénération de la glutathione, ce qui pourrait expliquer la diminution de la formation de sphères tumorales sous traitement metformine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monocarboxylate transporters (MCTs) have been described to play an important role in cancer, but to date there are no reports on the significance of MCT expression in gastrointestinal stromal tumors (GISTs). The aim of the present work was to assess the value of MCT expression, as well as co-expression with the MCT chaperone CD147 in GISTs and evaluate their clinical-pathological significance. We analyzed the immunohistochemical expression of MCT1, MCT2, MCT4 and CD147 in a series of 64 GISTs molecularly characterized for KIT, PDGFRA and BRAF mutations. MCT1, MCT2 and MCT4 were highly expressed in GISTs. CD147 expression was associated with mutated KIT (p = 0.039), as well as a progressive increase in Fletcher's Risk of Malignancy (p = 0.020). Importantly, co-expression of MCT1 with CD147 was associated with low patient's overall survival (p = 0.037). These findings suggest that co-expression of MCT1 with its chaperone CD147 is involved in GISTs aggressiveness, pointing to a contribution of cancer cell metabolic adaptations in GIST development and/or progression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective To determine the pharmacokinetics of doxorubicin in sulphur-crested cockatoos, so that its use in clinical studies in birds can be considered. Design A pharmacokinetic study of doxorubicin, following a single intravenous (IV) infusion over 20 min, was performed in four healthy sulphur-crested cockatoos (Cacatua galerita). Procedure Birds were anaesthetised and both jugular veins were cannulated, one for doxorubicin infusion and the other for blood collection. Doxorubicin hydrochloride (2 mg/kg) in normal saline was infused IV over 20 min at a constant rate. Serial blood samples were collected for 96 h after initiation of the infusion. Plasma doxorubicin concentrations were assayed using an HPLC method involving ethyl acetate extraction, reverse-phase chromatography and fluorescence detection. The limit of quantification was 20 ng/mL. Established non-parametric methods were used for the analysis of plasma doxorubicin data. Results During the infusion the mean +/- SD for the C-max of doxorubicin was 4037 +/- 2577 ng/mL. Plasma concentrations declined biexponentially immediately after the infusion was ceased. There was considerable intersubject variability in all pharmacokinetic variables. The terminal (beta-phase) half-life was 41.4 +/- 18.5 min, the systemic clearance (Cl) was 45.7 +/- 18.0 mL/min/kg, the mean residence time (MRT) was 4.8 +/- 1.4 min, and the volume of distribution at steady state (V-SS) was 238 131 mL/kg. The extrapolated area under the curve (AUC(0-infinity)) was 950 +/- 677 ng/mL.h. The reduced metabolite, doxorubicinol, was detected in the plasma of all four parrots but could be quantified in only one bird with the profile suggesting formation rate-limited pharmacokinetics of doxorubicinol. Conclusions and clinical relevance Doxorubicin infusion in sulphur-crested cockatoos produced mild, transient inappetence. The volume of distribution per kilogram and terminal half-life were considerably smaller, but the clearance per kilogram was similar to or larger than reported in the dog, rat and humans. Traces of doxorubicinol, a metabolite of doxorubicin, were detected in the plasma.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tobacco smoking, alcohol drinking, and occupational exposures to polycyclic aromatic hydrocarbons are the major proven risk factors for human head and neck squamous-cell cancer (HNSCC). Major research focus on gene-environment interactions concerning HNSCC has been on genes encoding enzymes of metabolism for tobacco smoke constituents and repair enzymes. To investigate the role of genetically determined individual predispositions in enzymes of xenobiotic metabolism and in repair enzymes under the exogenous risk factor tobacco smoke in the carcinogenesis of HNSCC, we conducted a case-control study on 312 cases and 300 noncancer controls. We focused on the impact of 22 sequence variations in CYP1A1, CYP1B1, CYP2E1, ERCC2/XPD, GSTM1, GSTP1, GSTT1, NAT2, NQO1, and XRCC1. To assess relevant main and interactive effects of polymorphic genes on the susceptibility to HNSCC we used statistical models such as logic regression and a Bayesian version of logic regression. In subgroup analysis of nonsmokers, main effects in ERCC2 (Lys751Gln) C/C genotype and combined ERCC2 (Arg156Arg) C/A and A/A genotypes were predominant. When stratifying for smokers, the data revealed main effects on combined CYP1B1 (Leu432Val) C/G and G/G genotypes, followed by CYP1B1 (Leu432Val) G/G genotype and CYP2E1 (-70G>T) G/T genotype. When fitting logistic regression models including relevant main effects and interactions in smokers, we found relevant associations of CYP1B1 (Leu432Val) C/G genotype and CYP2E1 (-70G>T) G/T genotype (OR, 10.84; 95% CI, 1.64-71.53) as well as CYP1B1 (Leu432Val) G/G genotype and GSTM1 null/null genotype (OR, 11.79; 95% CI, 2.18-63.77) with HNSCC. The findings underline the relevance of genotypes of polymorphic CYP1B1 combined with exposures to tobacco smoke.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

5-Fluorouracil (5-FU) is one of the most widely used drugs for treatment of cancers, including breast cancer that exhibits its anticancer activity by inhibiting DNA synthesis and also incorporated into DNA and RNA. The objective of this investigation was to find out the total nucleotide metabolism genes regulated by 5-FU in breast cancer cell line. The breast cancer cell line MCF-7 was treated with the drug 5-FU. To analyze the expression of genes, we have conducted the experiment using 1.7k and 19k human microarray slide and confirmed the expression of genes by semiquantitative reverse transcription-polymerase chain reaction. The expression of 44 genes involved in the nucleotide metabolism pathway was quantified. Of these 44 genes analyzed, transcription of 6 genes were upregulated and 9 genes were downregulated. Earlier studies revealed that the transcription of genes for key enzymes like thymidylate synthase, thymidinekinase, and dihydropyrimidine dehydrogenase are regulated by 5-FU. This study identified some novel genes like thioredoxin reductase, ectonucleotide triphosphate dephosphorylase, and CTP synthase are regulated by 5-FU. The data also reveal large-scale perturbation in transcription of genes not involved directly in the known mechanism of action of 5-FU.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Various endogenous and exogenous factors have been reported to increase the risk of breast cancer. Many of those are related to prolonged lifetime exposure to estrogens. Furthermore, a positive family history of breast cancer and certain benign breast diseases are known to increase the risk of breast cancer. The role of lifestyle factors, such as use of alcohol and smoking has been an area of intensive study. Alcohol has been found to increase the risk of breast cancer, whereas the role of smoking has remained obscure. A multitude of enzymes are involved in the metabolism of estrogens and xenobiotics including the carcinogens found in tobacco smoke. Many of the metabolic enzymes exhibit genetic polymorphisms that can lead to inter-individual differences in their abilities to modify hazardous substrates. Therefore, in presence of a given chemical exposure, one subgroup of women may be more susceptible to breast carcinogenesis, since they carry unfavourable forms of the polymorphic genes involved in the metabolism of the chemical. In this work, polymorphic genes encoding for cytochrome P450 (CYP) 1A1 and 1B1, N-acetyl transferase 2 (NAT2), sulfotransferase 1A1 (SULT1A1), manganese superoxide dismutase (MnSOD) and vitamin D receptor (VDR) were investigated in relation to breast cancer susceptibility in a Finnish population. CYP1A1, CYP1B1 and SULT1A1 are involved in the metabolism of both estrogens and xenobiotics, whereas NAT2 is involved only in the latter. MnSOD is an antioxidant enzyme protecting cells from oxidative damage. VDR, in turn, mediates the effects of the active form of vitamin D (1,25(OH)2D3, calcitriol) on maintenance of calcium homeostasis and it has anti-proliferative effects in many cancer cells. A 1.3-fold (95% CIs 1.01-1.73) increased risk of breast cancer was seen among women who carried the NAT2 slow acetylator genotype and a 1.5-fold (95% CI 1.1-2.0) risk was found in women with a MnSOD variant A allele containing genotypes compared to women with the NAT2 rapid acetylator genotype or to those with the MnSOD VV genotype, respectively. Instead, women with the VDR a allele containing genotypes were found to be at a decreased risk for breast cancer (OR 0.73; 95% CI 0.54-0.98) compared to women with the AA genotype. No significant overall associations were found between SULT1A1 or CYP genotypes and breast cancer risk, whereas a combination of the CYP1B1 432Val allele containing genotypes with the NAT2 slow acetylator genotypes posed a 1.5-fold (95% CI 1.03-2.24) increased risk. Moreover, NAT2 slow acetylator genotype was found to be confined to women with an advanced stage of breast cancer (stages III and IV). Further evidence for the association of xenobiotic metabolising genes with breast cancer risk was found when active smoking was taken into account. Women who smoked less than 10 cigarettes/day and carried at least one CYP1B1 432Val variant allele, were at 3.1-fold (95% CI 1.32-7.12) risk of breast cancer compared to women who smoked the same amount but did not carry the variant allele. Furthermore, the risk was significantly increased with increasing number of the CYP1B1 432Val alleles (p for trend 0.005). In addition, women who smoked less than 5 pack-years and carried the NAT2 slow acetylator genotype were at a 2.6-fold (95% CI 1.01-6.48) increased risk of breast cancer compared to women who smoked the same amount but carried the NAT2 rapid acetylator genotype. Furthermore, the combination of the CYP1B1 432Val allele and the NAT2 slow acetylator genotype increased the risk of breast cancer by 2.5-fold (95% CI 1.11-5.45) among ever smokers. Instead, the MnSOD A allele was found to be a risk factor among postmenopausal long-term smokers (>15 years of smoking) (OR 5.1; 95% CI 1.4-18.4) or among postmenopausal women who had smoked more than 10 cigarettes/day (OR 5.5; 95% CI 1.3-23.4) compared to women who had similar smoking habits but carried the MnSOD V/V genotype. Similarly, within subgroups of postmenopausal women who were using oral contraceptives, hormone replacement therapy or alcohol, women carrying the MnSOD A allele genotypes seemed to be at increased risk of breast cancer compared to women with the MnSOD V/V genotype. A positive family history of breast cancer and high parity were shown to be inversely associated with breast cancer risk among women carrying the VDR ApaI a allele or among premenopausal women carrying the SULT1A1*2 allele, respectively.